Role of Pre-Tasks in Second Language Writing

Veena Nair, PhD
Assistant Professor
Mar Baselios College of Engineering and Technology
Trivandrum, India
Corresponding Email: veenanair297@outlook.com

ABSTRACT

This paper reports a study conducted to explore the relationship of task complexity and L2 writing. Task complexity was varied on one dimension: presence (absence) of the pre-tasks. The results showed that when pre-tasks were administered to students (15 M. Phil students), structural complexity and lexical variety of student writing increased. It is, therefore argued that writing tasks in classroom should be preceded by pre-tasks which help with organization and content.

Keywords: Second language writing, tasks complexity, cognitive strategy

Introduction

Second language teachers often find it difficult to motivate and help learners write meaningful texts independently. This becomes evident when learners are expected to write expository and argumentative texts that require planning, prior knowledge of the context and a logical presentation of ideas. Such writing tasks require evaluation of ideas or topic statements and examples in favor of or against such statements. One way in which ESL learners can be motivated to employ higher levels of reasoning would be by providing some pre-tasks before the main writing task. Such tasks would orient learners to think about the topic, generate and evaluate ideas, and to produce better quality L2 writing.

This study was based on Robinson’s Cognition Hypothesis (2001) of task-based language learning. Robinson claims that when task complexity is decreased by planning, L2 performance improves in complexity and variety. The Cognition Hypothesis of Task Based Language Learning (TBLL) (Robinson, 2001) proposes that pedagogic tasks should be sequenced on the basis of increases in complexity. Precisely, task complexity refers to ‘the intrinsic cognitive demands of the task’, and while designing tasks, this
aspect can be controlled by varying task content (Robinson, 2003). According to Robinson (2001, p. 29):

Task complexity is the result of attentional, memory, reasoning and other information processing demands imposed by the structure of the task on the language learner. These differences in information processing demands, resulting from design characteristics, are relatively fixed and invariant.

Complex tasks, it is believed, require greater attention and memory resources and the information in the task needs to be deeply processed, which in turn require a greater variety of structures, such as complex tenses, subordination, or embeddings. Therefore, solving a complex puzzle would require more processing demands than narrating a simple incident or story. In this study, I have analyzed learner writing samples when pre-tasks are provided and not provided in descriptive, narrative, and argumentative tasks.

Literature review

Recent studies in cognitive psychology and SLA suggest that attention to formal features in the input plays an important role in SLA (Ahn, 2014; De Bot et al., 2005; Gui, 2004; Robinson, 2003; Tomlinson, 2003; Schmidt, 2001; Yoshioka et al., 2013). Therefore, it is important to draw learners’ attention to form, in a way that enables better and faster learning of form; one of the ways is to use pre-tasks. Pre-tasks are defined as tasks which are similar (not same) but simpler than the original task. According to Skehan (1998), pre-tasks:

- promote noticing.
- help notice the content and the language in the context.
- may lead to rehearsal, which helps in organizing new information.
- help learners in understanding how to perform the main task because of the teacher feedback on the pre-task.
- provide opportunities to produce output and receive relevant input.

It is useful not only to the learners but also can be an excellent teaching strategy. It provides learners with a model of the main task, thereby decreasing the teacher’s load. It helps teachers in providing a demonstration of an ideal performance to the student, analysing the features of an ideal text, and also training them in the use of a strategy. It also gives an opportunity to the teachers to introduce and create interest in doing a task on the chosen
topic. Teachers can give feedback after the pre-task which can help learners understand how to perform the task. It also helps teachers in comprehending the effectiveness of the task and modifies the main task accordingly if required. It can help to test the main task, tools, and equipments. It provides an opportunity to the learners and teachers to plan on how to perform the main task.

Presence of pre-task provides more time to the learners to give attention to content and grammatical accuracy. It frees up cognitive space for the use of a wider vocabulary by the learners. It also leads to a higher conceptual elaboration; a higher chance of accessing less activated terms; and helps to consider a large number of alternatives for words (Ortega 1999). Planning leads to transformation of material and ideas in preparation of the task which is to be completed. The organizational changes in the pre-task may help the learners in developing a more complex output and organizing the target task better. If the ideas and schematic knowledge required for task performance are appropriate, then a greater amount of attention will be available for the main task (Robinson, 2001, pp. 202-203) after planning time is given. Thus, the language used in such tasks would also become complex. This is what Robinson terms as resource-dispersing tasks in his Triadic Componential Framework (Robinson, 2001). According to Robinson, increasing complexity along these dimensions simulates the processing conditions under which real time language is often used.

Similar results have been found in other studies (Crookes 1989; Ellis 1987; Foster & Skehan, 1996; Ortega, 1999; Robinson, Ting, & Urwin, 1995). It was found that planning has a stronger effect on fluency and on complexity than on accuracy. When learners plan, they pay more attention to what they want to say than on the linguistic structures used. In this study, I looked at a different aspect of planning, that is, the availability of a pre-task. The logic put forth for planning would apply in this case as well: Planning time (and pre-task) reduces the cognitive load and communicative stress and frees up attentional resources, enabling learners to evaluate task demands and concentrate on form and meaning in a more relaxed way.

Research design

The hypothesis of the study was: Presence of pre-task will help learners write more complex and organized texts. Pre-task variable had two conditions: (1) without pre-task and (2) with pre-task. There were 3 dependent variables in
the study, which were expected to be affected by varying levels of task complexity. They variables were:

Structural complexity

This was analyzed by calculating the Mean T-Unit Length (MTUL). Total number of T-units\(^1\) in a text is divided by the total number of words in a text (Hunt, 1965).

Below is an example of the computation of MTUL:

\[
\text{[The kings ruled the place for years]} \quad T_1 \\
\text{[and left behind the monuments which are now cherished for its great history.]} \quad T_2
\]

\[T_1 = \text{one simple sentence}; \quad T_2 = \text{one complex sentence}\]

\[\text{MTUL} = \frac{\Sigma \text{number of words per T units}}{\text{Total number of T units}} = \frac{7 + 13}{2} = 10\]

Lexical variety (LV)

It can be calculated by dividing the different types (noun, verb, adjective…) of words by the total number of words.

\[\text{Lexical Variety} = \frac{\text{Total number of different words}}{\text{Total number of words in the text}}\]

Accuracy

Mean of error free T-units used.

\[\text{Accuracy} = \frac{\text{No. of Error-free T Units}}{\text{No. of T units}}\]

\(^1\) Shortest grammatically correct unit (e.g. He went to the market and bought a pair of shoes). This sentence contains two T-units.
Participants

The participants of this research were 15 M. Phil students (13 females and 2 males between the age group of 23-28 years) working in varied areas of English Discipline (Cultural Studies, English Language Teaching, Literature and Linguistics). These participants were the final year M. Phil students of a university in Hyderabad, India. All of them are expected to perform higher order skills like reading complex texts, understanding and summarizing them, comparing and contrasting information given etc. All the participants had to perform a free writing task (no time limit was given for this task) to analyze their proficiency. They were required to narrate their first experiences in school or college. The written transcript was evaluated by two different raters for accuracy, fluency, content, and layout, using Central Board of Secondary Education (CBSE, a national level board of accreditation in India) writing assessment scale. Inter rater reliability was 0.73, significant at $p<0.05$.

Procedure and tasks

Participants were randomly divided into two groups with each group consisting of 8 and 7 members. The study was set up as a repeated measures design, in which all participants performed a set of complex and simple tasks. They had to work on 4 tasks. There were 2 tasks for (\pm) pre-task (1 easy and 1 complex).

Description of tasks

Learners wrote short paragraphs (250 words) on two assigned topics which required either an argumentation or a description. Each task had two conditions: $(+)$ pre-task and $(-)$ pre-task. To avoid practice effect, sufficient time gap was provided between the tasks. For the argumentative task (as a pre-task) learners were given three case studies where information related to the assigned topic was provided. The texts were followed by three questions, which drew their attention to the content and organization of their ideas in the texts. For the descriptive task, learners were given a sample brochure as pre-task. Participants were required to answer six questions on the brochure which highlighted different features of a brochure: the audience, layout, grammar, and vocabulary.
Findings and discussion

A comparison was made between the (−) Pre-tasks (deemed as complex) and (+) Pre-tasks (deemed as simple) on three measures: Structural complexity (Mean T-Unit Length), lexical variety, and accuracy. The means and standard deviations of these measures on the (+/-) pre-task conditions are given below.

Table 1.1: All measures in (+/-) Pre-task: Mean and Standard Deviation (in brackets) and level of significance

<table>
<thead>
<tr>
<th></th>
<th>Without pre-task</th>
<th>With pre-task</th>
<th>T value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Complexity</td>
<td>13.708 (2.64)</td>
<td>15.10 (3.26)</td>
<td>1.29</td>
<td>0.209</td>
</tr>
<tr>
<td>Lexical Variety</td>
<td>0.567 (0.053)</td>
<td>0.616 (0.065)</td>
<td>2.26*</td>
<td>0.0319</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.92 (0.08)</td>
<td>0.94 (0.05)</td>
<td>0.737</td>
<td>0.473</td>
</tr>
</tbody>
</table>

*significant at p<0.05

Table 1.1 shows that structural complexity measured by mean T-Unit length is significantly higher in (+) Pre-task condition than in (−) Pre-task condition, though not significant. The presence of the pre-task has also made learners use more lexical variety in the main task than in the absence of a pre-task, t (28)=2.26 at p ≤0.05. Accuracy levels demonstrate a marginal growth when the content of the task and the organization of ideas are available through a pre-task, and when a learner has more time to monitor his production. Thus the presence of pre-task assists in changing the writing production of learners and leads to the use of more complex and richer writing style.

Structural complexity (SC)

Gains in structural complexity, as a result of providing pre-task planning, have been a consistent issue in planning time studies (Ortega, 1999; Skehan & Foster, 1997; Yuan & Ellis, 2003). Skehan and Foster (1997) found that narrative tasks generated higher levels of complexity compared to information as opinion exchange. A highly planned task pushes learners into complex language. In this study, structural complexity, measured by Mean T-
Unit length, was not found to be significantly higher in +pre-task condition, though in both tasks, the complexity was higher in +pre-task condition. Structural complexity seems to be largely determined by the inherent properties of the task rather than the availability of pre-task.

Table 1.1 indicates that in both the tasks, the structural complexity of the written responses increase in the (+) pre-task condition, as compared to the (-) pre-task condition. However, in case of argumentative task, learners write more complex texts (see Figure 1.1, M=18.41, SD=6.02); when they had a pre-task, in the case of descriptive task (M= 13.008, SD=2.39) the difference is significant t (28)=2.06 at \(p \leq 0.0498 \). It is found that the nature of task—argumentative or narrative—makes a difference. Pre-task availability seems to help complex argumentative tasks more than simple narrative tasks. This finding is in line with Ortega’s study (1999); cognitively complex tasks may benefit more from planning than simple tasks.

Figure 1.1: Structural Complexity in +/- Pre-task

Lexical variety (LV)

Pre-task leads to higher conceptual elaboration; a higher chance of accessing less activated terms and helps to consider a large number of alternatives for words (Ortega 1999). It is to note that Skehan and Foster (1997) did not measure lexical complexity—since they had operationalized complexity as largely structural complexity. Mehnert (1998) measured lexical density (to measure lexical complexity) and found that lexical density increased with
Pre-tasks in Second Language Writing

pre-task planning time. On the contrary, Ortega (1999) found no significant differences in lexical variety in the planned tasks.

Table 1.2: Lexical Variety in (+/-) Pre-task: Mean, standard deviation (in brackets) and level of significance

<table>
<thead>
<tr>
<th></th>
<th>Without pre-task</th>
<th>With pre-task</th>
<th>T value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argumentative</td>
<td>0.54 (0.08)</td>
<td>0.615 (0.09)</td>
<td>2.42*</td>
<td>0.0224</td>
</tr>
<tr>
<td>Descriptive</td>
<td>0.59 (0.08)</td>
<td>0.617 (0.07)</td>
<td>0.93</td>
<td>0.3593</td>
</tr>
</tbody>
</table>

*significant at $p<0.05$

Table 1.2 shows task wise increases in lexical variety. As found on the Structural complexity measure, learner writing differs in the richness of lexical use in the argumentative task than in the descriptive task. The presence of the pre-task makes learners use significantly greater lexical variety as well (Mean=0.615) when compared to a condition where no pre-task was provided (Mean=0.54). This signals that lexical variety of writing are higher for complex tasks than for simple tasks when pre-task is provided.

Accuracy

ANOVA repeated measures analysis do not show any effect of tasks or condition on the accuracy measures. Accuracy also seems to marginally increase from a mean of 0.892 to 0.918. This signifies that availability of pre-task does not increase grammatical accuracy; this finding contradicts Skehan’s Limited Attention Capacity Model (1996), which claimed that if the cognitive load of tasks is higher, learners seem to produce lower levels of grammatical complexity and accuracy. However, it supports Robinson’s (2001) claim that accuracy is unaffected by task complexity, and learners can attend to both task demands and accuracy simultaneously.

In the study, tasks with pre-tasks were as accurate as those without pre-tasks. Though, + pre-task condition seems to have increased the structural complexity, the accuracy scores have neither decreased nor increased. Two explanations can be given for this phenomenon. The first is that the participants for the study were all advanced learners, and therefore their
proficiency is unlikely to be affected by task complexity. Secondly, learners are predisposed to use planning time (made available here by reduction of cognitive load because of the presence of a pre-task) to pay attention to how to organize and encode the propositional content rather than to search for their innate linguistic system to increase accuracy. These findings on complexity and accuracy can be explained by a discussion on the attentional resource available for a task. Some of the pre-tasks can be foregrounding (introducing to topic of task), planning, consciousness raising, observing, doing similar tasks, explicit teaching, and implicit teaching (Skehan, 1996).

Conclusion

The findings of the study suggest that complex tasks, like decision making tasks benefit more from planning time than personal information gap task, in which learners had a higher degree of familiarity with the task content and therefore found it easier. When pre-tasks are provided along with the main task, structural complexity increases, but accuracy levels do not drop. In this context, Robinson remarks: Mind is a multiple resource pool and that attention to accuracy and complexity can be simultaneous. The study indicates that availability of pre-tasks increased Structural Complexity and Lexical Variety of the output.

The variety of words and complexity of language increases when tasks come with some kind of pre-task which is intended to familiarize learners with task content, language, discourse, genre. Therefore, writing tasks in classroom should be preceded by pre-tasks which help with organization and content. This can be employed by ESL teachers as a cognitive strategy to impart quality education, especially production in the written form. Rich input in the form of pre-tasks enhances processing of thoughts/ideas, and enables the use of linguistic resources by ESL learners.

References

Pre-Tasks in Second Language Writing

Skehan, P. & Foster, P. (1997). Task type and task processing conditions as influences on foreign language performance. Language Teaching Research, 1, 185-211.

